Instructor: Alexander Paulin

Handout: Implicit Differentiation

Discussions 201, 203 // 2018-10-10

Curvature

Problem A1. The solution set of the equation

$$x^2 + (y+2)^2 = 4$$

is a circle of radius 2 centered at the point (0, -2). Suppose (x_0, y_0) is a point on the circle. Use implicit differentiation to find the value of $\frac{dy}{dx}$ at that point, in terms of x_0 and y_0 .

Problem A2. Consider the function $f(x) = x^2$. Show that the circle from the preceding problem is tangent to the graph of f at the point (0, 0).

Problem A3. Convince yourself that there are in fact *infinitely* many circles which are tangent to the graph of f at the point (0, 0). However, there is a particular circle which, in addition to being tangent to f at (0, 0), is "perfectly nested" in the graph of *f* .

 $x^{2} + (y - 1/2)^{2} = 1/4.$

Use implicit differentiation to compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (0, 0) on the circle. Do these calculations help explain why the circle is so nicely "nested" in the parabola?

A CUBIC CURVE

In this part of the worksheet, we will consider the curve given by the equation

Problem B1. Check that the point P = (0, 1) is on the curve.

Problem B2. Write the equation of the tangent line to the curve at the point *P*.

Problem B3. The tangent line at *P* intersects the curve at another point *Q*. Find the coordinates of this other point *Q*.

If you examine the picture, you'll see that there's another tangent line to the curve which passes through the point *Q*. (The equation for that one is not so nice.)

Problem (Food for thought). Suppose you were given the equation of a smooth *quartic* (degree 4) curve, as well as a point (x, y) on the curve. Let *L* be the line through (x, y) that is tangent to the curve. How could you determine the other point(s) (if any) at which *L* intersects the quartic curve?